As October rolls around it is almost time for the 2019 RSES Annual Conference & HVACR Technology Expo. It’s during our conference, probably more than any other time, that we at headquarters really get a sense for how our Members are doing.

Sure, we talk on the phone and communicate through email but that’s not the same as actually being face-to-face with our Members and hearing about everything they are dealing with in the HVACR industry today. RSES prides itself on educating the HVACR technician but we don’t really know if we’re doing a good job unless you tell us.

That is why at this conference I want you to tell us how you really feel. Are we providing you with the content you need? What can we do better? We know there’s always room for improvement and we will do everything we can to fit your needs.

We are bringing in fresh blood this year as well. RSES Journal’s new Managing Editor Bob Mader, and Steve Vaughn, our new Marketing & Communications Director, will be on hand throughout the conference to answer any questions you may have about the magazine or RSES in general.

It’s in that spirit that I want to open the lines of communication to myself as well. As Senior Editor I am always on the lookout for new material and there is no one better to get essential content from than our Members. This applies all across the board.

In coming issues you will be seeing more interaction between our editorial content and you, the reader. We know that you have strong opinions about the HVACR industry, products, regulations, the skills gap…and we at RSES Journal think it is time you had an avenue to talk about it. That is why we want you to start contributing. This column, for instance, is always on the lookout for new writers to tell their story and provide a unique perspective to the HVACR industry. Whether you are a seasoned veteran or fresh out of trade school we want our readers to know more about what makes the HVACR industry tick.

We are also on the lookout for more contributions to the MSAC Hotline. We know that techs sometimes run into problems they can’t always solve on their own, RSES Journal is here to help. Each month our MSAC Board of Directors, created from some of the top manufacturing companies in the industry, pool their resources to answer your questions. That column cannot continue without your support and that is why we need you to be inquisitive now more than ever.

If you would like to contribute to the Last Word or MSAC Hotline feel free to reach out to me directly at jbrandes@rses.org. Not only that but if you have anything you would like to let me know about the magazine or any ideas you have feel free to send me that as well in an email.

Any of our readers that have read my columns in the past know how much I value the power of evolution. I believe that the more input we have from our readers the better RSES Journal can be for everyone. As an editor, you, the reader, provide me with constant inspiration just as I hope our articles inspire you to learn more and be a better tech.

Since the Conference next month is one of the few times we get to be face-to-face with our Members make sure you reach out to us and let us know how we can make you better techs. We can’t wait to hear from you.

TRoubleshooting answer

There are several clues here, one being that the blower came on for a few seconds and then the fuse blew and, second, that it occurred on the first hot day of summer. The next diagnostic step would be to establish exactly which circuit is causing the overcurrent condition (high amps). Rather than walking back and forth to the thermostat over and over, I prefer to work at the furnace and use a jumper to energize each load circuit one at a time from R while leaving Common connected. It is advantageous to use a long jumper wire with a 10 wraps around your ammeter clamp so you can instantly see which one is drawing high current as soon as you connect it to R.

In this case the wire feeding the contactor outside reads an amperage that is much too high when energized. You go outside and find the contactor is seized open. Because the contactor is an electromagnetic solenoid, the coil draws high amps and produces more heat when the iron core can’t be drawn into the coil like it is designed to do. You replace the contactor and the system now operates properly.